A new hypothesis suggests that forest cover plays a much greater role in determining rainfall than previously recognized. It explains how forested regions generate large-scale flows in atmospheric water vapor. Under this hypothesis, high rainfall occurs in continental interiors such as the Amazon and Congo river basins only because of near-continuous forest cover from interior to coast. The underlying mechanism emphasizes the role of evaporation and condensation in generating atmospheric pressure differences, and accounts for several phenomena neglected by existing models. It suggests that even localized forest loss can sometimes flip a wet continent to arid conditions. If it survives scrutiny, this hypothesis will transform how we view forest loss, climate change, hydrology, and environmental services. It offers new lines of investigation in macroecology and landscape ecology, hydrology, forest restoration, and paleoclimates. It also provides a compelling new motivation for forest conservation.
Keywords: climate change, environmental services, macroecology, transpiration, paleoclimate
**********
Life depends on Earth's hydrological cycle, especially the processes that carry moisture from oceans to land. The role of vegetation remains controversial. Local people in many partially forested regions believe that forests "attract" rain, whereas most modern climate experts would disagree. But a new hypothesis suggests that local people may be correct.
The world's hydrological systems are changing rapidly. Food security in many regions is heavily threatened by changing rainfall patterns (Lobell et al. 2008). Meanwhile, deforestation has already reduced vapor flows derived from forests by almost five percent (an estimated 3000 cubic kilometers [[km.sup.3]] per year of a global terrestrial derived total of 67,000 [km.sup.3]), with little sign of slowing (Gordon et al. 2005). The need for understanding how vegetation cover influences climate has never been more urgent.
Makarieva and Gorshkov have developed a hypothesis to explain how forests attract moist air and how continental regions such as the Amazon basin remain wet (Makarieva et al. 2006, Makarieva and Gorshkov 2007, and associated online discussions; hereafter, collectively "Makarieva and Gorshkov"). The implications are substantial. Conventional models typically predict a "moderate" 20 to 30 percent decline in rainfall after continental-scale deforestation (Bonan 2008). In contrast, Makarieva and Gorshkov suggest that even relatively localized clearing might ultimately switch entire continental climates from wet to arid, with rainfall declining by more than 95 percent in the interior.
Whereas Makarieva and Gorshkov's publications are technical, detailing the physics behind their hypothesis, we explain the basic ideas and their significance for a wider audience. We begin by noting why the ideas are credible and merit notice. We then summarize the conventional understanding of forest-climate interactions and Makarieva and Gorshkov's proposals. We focus on tropical forests. After examining what makes these forests special, we consider various implications and research opportunities related to Makarieva and Gorshkov's hypothesis. Finally, we underline the importance of these ideas for forest conservation.
Credible
Despite considerable research, the mechanisms determining global climate remain poorly understood. Any consensus summary on climate physics must spend more words on detailing uncertainties than on facts (e.g., IPCC 2007). Despite recognized advances in recent decades,...
This is a preview. Get the full text through your school or public library.