Environmental design

Citation metadata

Editor: Deirdre S. Blanchfield
Date: July 7, 2015
Publisher: Gale
Document Type: Topic overview
Length: 1,867 words
Content Level: (Level 5)
Lexile Measure: 1360L

Document controls

Main content

Full Text: 

Environmental design is a new approach in planning consumer products and industrial processes that are ecologically intelligent, sustainable, and healthy for both humans and our environment. Climate change, brought about by human activities, has fostered an increased interest in reducing human impact on the environment. Based on the work of innovative thinkers such as American architect Bill McDonough (1951-), German chemist Michael Braungart (1958-), American physicist and environmentalist Amory Lovins (1947-), Swedish physician Dr. Karl-Henrik Robért (1947-), and American business executive Paul Hawken (1946-), this movement is an effort to rethink the whole industrial economy. During the first Industrial Revolution 200 years ago, raw materials such as lumber, minerals, and clean water seemed inexhaustible, whereas nature was regarded as a hostile force to be tamed and civilized. Society uses materials to make the things they want, then discard them when they no longer are useful. "Dilution is the solution to pollution" suggests that if people just spread their wastes out in the environment widely enough, no one will notice.

This approach has given the world an abundance of material things, but also has produced massive pollution and environmental degradation. It also is incredibly wasteful. On average, for every truckload of products delivered in the United States, thirty-two truckloads of waste are produced along the way. The automobile is a typical example. Industrial ecologist, Lovins, calculates that for every one hundred gallons (380 liters) of gasoline burned in your car engine, only 1 percent (0 gallons or 3.8 liters) actually moves the passengers inside. All the rest is used to move the vehicle itself. The wastes produced--carbon dioxide (CO2), nitrogen oxides (NOx), unburned hydrocarbon, rubber dust, and heat--are spread through the environment where they pollute air, water, and soil. And when the vehicle wears out after only a few years of service, thousands of pounds of metal, rubber, plastic, and glass become part of our rapidly growing waste stream.

This is not the way things work in nature, environmental designers point out. In living systems almost nothing is discarded or unused. The wastes from one organism become the food of another. Industrial processes, to be sustainable over the long term, should be designed on similar principles, designers argue. Rather than following current linear patterns in which manufacturers try to maximize the throughput of materials and minimize labor, products and processes should be designed to be energy efficient and use renewable materials. Industrial processes should create products that are durable and reusable or easily dismantled for repair and remanufacture, and are non-polluting throughout their entire life cycle. Countries should base their economies on renewable solar energy rather than fossil fuels. Rather than measuring conomies progress by how much material is used, they should evaluate productivity by how many people are gainfully and meaningfully employed. They should judge how well they are doing by how many factories have no smokestacks or dangerous effluents. They ought to produce nothing that will require constant vigilance from future generations.

Inspired by how ecological systems work, McDonough proposes three simple principles for designing processes and products:

  • Waste equals food. This principle encourages elimination of the concept of waste in industrial design. Every process should be designed so that the products themselves, as well as leftover chemicals, materials, and effluents, can become food for other processes.
  • Rely on current solar income. This principle has two benefits: First, it diminishes, and may eventually eliminate, reliance on hydrocarbon fuels. Second, it means designing systems that sip energy rather than gulping it down.
  • Respect diversity. Evaluate every design for its impact on plant, animal, and human life, examining the effects of products and processes on identity, independence, and integrity of humans and natural systems. Every project should respect the regional, cultural, and material uniqueness of its particular place.

According to McDonough, the first question about a product should be whether it is really needed. Would it be possible to obtain the same satisfaction, comfort, or utility in another way that has less environmental and social impact? For the well-being of the environment, the things companies design should be restorative and regenerative: they should help reduce the damage done by earlier, wasteful approaches and help nature heal rather than simply adding to existing problems. McDonough invites society to reinvent businesses and institutions to work with nature, and redefine people as consumers, producers, and citizens to promote a new sustainable relationship with the earth. In an eco-efficient economy, McDonough says, products might be divided into three categories:

  • Consumables are products such as food, natural fabrics, or paper that are produced from renewable materials and can go back to the soil as compost.
  • Service products are durables such as cars, televisions, and refrigerators. These products should be leased to the customer to provide their intended service, but would always belong to the manufacturer. Eventually, they would be returned to the maker, who would be responsible for recycling or remanufacturing.
  • Unmarketables are materials such as radioactive isotopes, persistent toxins, and bioaccumulating chemicals. Ideally, no one would make or use these products. But because eliminating their use will take time, McDonough suggests that for now, these materials should belong to the manufacturer and be molecularly tagged with the maker's mark. If they are discarded illegally, the manufacturer would be liable.

Following these principles McDonough Braungart Design Chemistry (MBDC) has created nontoxic, easily recyclable, healthy materials for buildings and for consumer goods. Rather than designing products for a cradle-to-grave life cycle, MBDC aims for a fundamental conceptual shift to Cradle to Cradle® processes, whose materials perpetually circulate in closed systems that create value and are inherently healthy and safe. Among some important examples are carpets designed to be recycled at the end of their useful life, paints and adhesives that are non-toxic and non-allergenic, and clothing that is both healthy for the wearer and that has minimal environmental impact in its production.

Braungart founded the Environmental Protection and Encouragement Agency (EPEA) in 1987 to promote the design of products, processes, and services based on the application of the Cradle to Cradle principles. The EPEA is "an international scientific research and consultancy institute that improves product quality, utility and environmental performance via eco-effectiveness." The design and principles of the EPEA are focused on continual utility of materials in either a recycled or upcycled manner exceeding environmental standards. In addition to the design of products, the EPEA is also involved with policy-making, planning, and administrative processes related to environmental design.

In his architecture firm, McDonough + Partners, these new design models and environmentally friendly materials have been used in a number of innovative building projects. A few notable examples include The Gap, Inc. offices in California and the Environmental Studies building at Oberlin College in Ohio.

Built in 1994 The Gap building in San Bruno, California, is designed to maintain the unique natural features of the site, while providing comfortable, healthy, and flexible office spaces. Intended to promote employee well-being and productivity as well as eco-efficiency, The Gap building has high ceilings, open, airy spaces, a natural ventilation system including operable windows, a full-service fitness center (including a pool), and a landscaped atrium for each office bay that brings the outside in. Skylights in the roof deliver daylight to interior offices and vent warm, stale air. Warm interior tones and natural woods (all wood used in the building was harvested by certified sustainable methods) give a friendly feel. Paints, adhesives, and floor coverings are low toxicity to maintain a healthy indoor environment. A pleasant place to work, the offices help recruit top employees and improve both effectiveness and retention.

The roof of The Gap Building is a green roof, planted with native grasses and wildflowers that absorb rainwater and help improve ambient environmental quality. The grass roof also is beautiful and provides thermal and acoustic insulation. At night, cool outdoor air is flushed through the building to provide natural cooling. By providing abundant daylight, high-efficiency fluorescent lamps, freshair ventilation, and other energy-saving measures, this pioneering building is more than 30 percent more energy efficient than required by California law. Operating savings within the first four to eight years of occupancy are expected to repay the initial costs of these design innovations.

An even more environmentally friendly building was built at Oberlin College in 2001 to house its Environmental Studies Program. Under the leadership of American environmentalist Dr. David Orr, the Adam Joseph Lewis Center was planned around the concept of ecological stewardship and is intended to be both restorative and regenerative rather than merely non-damaging to the environment. The building is designed to be a net energy exporter, generating more power from renewable sources than it consumes annually. More than 3,700 square feet (roughly 350 square meters) of photovoltaic panels on the roof are expected to generate 7,500 kilowatt hours of energy per year. The building also draws on geothermal wells for heating and cooling, and features use of natural daylight and ventilation to maintain interior comfort levels and a healthy interior environment. High efficiency insulation in walls and windows are expected to make energy consumption nearly 80 percent lower than standard academic buildings in the area.

The Lewis Center also incorporates an innovative living machine for internal waste water treatment, a constructed wetland for storm water management, and a landscape that provides social spaces, learning opportunities with live plants, and habitat restoration. It is expected that all water used in the building will be returned to the environment in as good a quality as when it entered. The water produced by natural cleaning processes should be of high enough quality for drinking, although doing so is not planned at present.

Taken together, these restorative and regenerative environmental design approaches could bring about a new industrial revolution. The features of environment design are incorporated in McDonough's Hannover Principles prepared for the 2000 World Fair in Hannover, Germany. This manifesto for green design urges people to recognize how humans interact with and depend on the natural world. According to McDonough, society needs to recognize even distant effects and consider all aspects of human settlement, including community, dwelling, industry, and trade in terms of existing and evolving connections between spiritual and material consciousness. People should accept responsibility for the consequences of design decisions upon human well-being and the viability of natural systems. They have to understand the limitations of design. No human creation lasts forever, and design does not solve all problems. Those who create and plan should practice humility in the face of nature. They should treat nature as a model and mentor, not an inconvenience to be evaded and controlled. If designers can incorporate these ecologically intelligent principles into practice, they may be able to link long-term, sustainable considerations with ethical responsibility and to reestablish the integral relationship between natural processes and human activity.

The number of United States educational institutions that have programs that focus on environmental or green design programs that promote the integration of the arts, architecture, landscape architecture, regenerative studies, and urban and regional planning are on the rise. The Harvard University Graduate School of Design has the world's oldest landscape architecture program, and the oldest urban planning program in North America.


Source Citation

Source Citation   

Gale Document Number: GALE|CV2644150477