Railroads

Citation metadata

Editor: Stanley I. Kutler
Date: 2003
From: Dictionary of American History(Vol. 7. 3rd ed.)
Publisher: Charles Scribner's Sons
Document Type: Topic overview
Length: 6,631 words
Content Level: (Level 4)
Lexile Measure: 1220L

Document controls

Main content

Full Text: 
Page 30

RAILROADS

RAILROADS. Beginning in the nineteenth century in the United States, a vast system of railroads was developed that moved goods and people across great distances, facilitated the settlement of large portions of the country, created towns and cities, and unified a nation.

Early railways were a far cry from the great system of railroads that were built in the nineteenth century and that continue to be used today. The earliest railways in the United States were short, wooden railways built by quarries and mines along which horses pulled loads to nearby water ways. In 1827, quarry and mine operators in Quincy, Massachusetts, and Mauch Chunk, Pennsylvania, constructed the first full-size railways. The first locomotive for use on railways was imported from England in 1829. The English had been experimenting with steam-powered locomotives since the late eighteenth century and had developed a prototype by 1828. Horatio Allen, working for the Delaware & Hudson Canal Company, purchased four of these early steam locomotives and brought them to the United States. One, Stourbridge Lion, was tested on 8 August 1829, but proved to be too heavy for the tracks that had been constructed and was subsequently retired.

Undeterred, railroad companies continued to seek a viable steam-powered locomotive. By 1828, railroad track was being laid not only by the Delaware & Hudson, but also by the Baltimore & Ohio and the South Carolina Railroads. Locomotive engines were needed. Peter Cooper rose to the challenge and on 28 August 1830 drove his diminutive Tom Thumb locomotive at speeds approaching fifteen miles per hour while towing a car filled with thirty people. The thirteen-mile trip was made from Baltimore to Ellicot's Hill in Maryland.

With the viability of steam-powered locomotives proven, the race was on to build other, larger locomotives. The Baltimore & Ohio and the South Carolina railroads instituted contests for locomotive designs. E. L. Miller was commissioned by the South Carolina to construct what would be the first locomotive built in America for use on railroad. He named the locomotive The Best Friend of Charleston. Tested in October of 1830, the engine performed admirably. Unfortunately, The Best Friend exploded the following year, but not before the South Carolina Railroad inaugurated service on 25 December 1830. The Best Friend pulled train cars, the first locomotive to do so in the United States, along six miles of track out of Charleston. The age of the railroad in America had begun.

Other railroads quickly followed the South Carolina and the Baltimore & Ohio. Steam-powered railroads operating in the early 1830s included the Mohawk & Hudson, the earliest link in the future New York Central system, begun on 9 August 1831; the Camden and Amboy,

Page 31  |  Top of Article


Railroads

later part of the Pennsylvania system, in 1831; the Philadelphia, Germantown and Norristown in 1832; and the railroad connecting New Orleans with Lake Pontchar-train, afterward part of the Louisville and Nashville Railroad, on 17 September 1832. By 1835 railroads ran from Boston to Lowell, Massachusetts, the beginnings of the future Boston and Maine; to Worcester, Massachusetts, first link in the Boston and Albany Railroad; and to Providence, Rhode Island, the genesis of the New York, New Haven and Hartford Railroad. The Petersburg Railroad, later part of the Atantic Coast Line, ran from the Virginia City into North Carolina.

By 1840, railroad track in the United States had reached almost three thousand miles; by 1850, more than nine thousand miles; by 1860 over thirty thousand miles. During these decades, technology associated with the steam locomotive continued to improve, and innovations were made in the design of the tracks themselves. Early tracks were constructed of wood, which was not strong enough to support ever-heavier locomotives. Iron rails were developed that could carry the weight of large, steam-powered locomotives. These rails were originally laid on crossties made of blocks of stone, which were not only expensive, but also could not support the weight of locomotives. They were replaced by wooden crossties similar to those used today.

Several other innovations helped foster the growth of railroads between 1840 and 1860. These included T-shaped rails that distributed the weight of trains evenly and hook-headed spikes that grabbed the rail, thus attaching it securely to the crossties. Swiveling trucks under railroad cars created greater stability, allowing trains to travel over rough roadbed and high terrain. The development of truss and cantilever bridges provided a way to get railroads over water ways and other obstructions. By the 1860s, track could be laid virtually any where.

In the 1850s the ambitious efforts to reach the seaports of the Atlantic and to reach the West were successful. The Erie Railroad and the Albany & New York Central connected New York State and New York City with the Great Lakes. Philadelphia established an all-rail connection with Pittsburgh, and Baltimore reached the Ohio River at Wheeling, Virginia (now West Virginia), early in the 1850s. Other lines were built across the more open and level country of the Middle West. Two railroads, the Michigan Central and the Michigan Southern, reached Chicago from the east in 1852. Both were later incorporated into the New York Central system. Lines were also built west from Chicago. The Galena & Chicago Union (later the Chicago and North Western) reached the Mississippi River in February 1854. Only a year later a route between Chicago and East Saint Louis afforded anotherPage 32  |  Top of Article rail connection between the eastern seaboard and the Mississippi River, while in 1857 two more connections were added. A direct route from the Atlantic to Chicago was constructed from Baltimore via Cincinnati. In addition, a route between Charleston, South Carolina, and Savannah, Georgia, on the Atlantic coast and Memphis, Tennessee, on the Mississippi, was built.

Railroads were also being built from the far bank of the Mississippi River westward. On 9 December 1852, the Pacific Railroad of Missouri (later the Missouri Pacific) ran five miles westward from Saint Louis. In 1856, the locomotive The Iron Horse crossed the Mississippi on the first railroad bridge. The bridge belonged to the Rock Island line, later called the Chicago, Rock Island & Pacific. By 1860, the railroad had reached the Missouri River on the tracks of the Hannibal & Saint Joseph (later part of the Burlington lines).

Standardization

The thousands of miles of track laid and the locomotives and other railroad equipment built in the early years of the railroad in the United States were all done by private companies. These companies built their railroads to suit their needs and to specifications they determined. Tracks were built in a variety of gauges (the distance between the rails) ranging from two and one-half feet to six feet. By the 1870s, close to two dozen gauges of track were in use in the United States. Locomotives were built to fit the gauge of the track. In addition, the couplings used to attach one train car to another varied. The incompatibility of railroads was not a problem if the purpose of the railroads remained to move people and goods over short distances. However, when the potential of the railroad to travel greater distances, even to traverse the country, was realized, the need for industry standards became evident.

Track gauge was the first of such standards to be achieved. The standard gauge in the South was five feet. In the rest of the country, the predominant gauge was four feet eight and one-half inches—the standard English gauge that had been used because locomotives had been imported from England. In 1886, the South changed its gauge to conform to that of the rest of the country. Trains today run on this gauge of track except for a limited of number of narrow-gauge railroads.

Next came standardization of locomotives and railroad cars to fit the track; standardization of couplings followed. Early couplers were simple link and pin devices that were unsafe and unreliable. In 1885, forty-two improved couplers were tested in Buffalo, New York. In 1887, a coupler designed by Eli H. Janney was adopted as the standard; Janney's design remained in use until the 1970s.

Interchanging cars between railroads also required the standardization of brakes. Early train brakes were hand brakes operated by brakemen in each car. Efforts to standardize brakes were unsuccessful until 1869. In that year, George Westinghouse developed his first air brake. In 1871, he designed an air brake that would immediately engage if cars became separated. Westinghouse's air brakes were designed only to work on passenger trains. Air brakes for freight trains were not developed until 1887, after testing on the Chicago, Burlington, & Quincy in Burlington, Iowa. These air brakes, with improvements, have remained an integral part of freight trains.

One final, crucial feature of rail transport needed to be standardized: time. Efforts were made in the 1870s to standardize rail schedules and timetables. In light of the increasing interconnection of railroad lines, the timing of trains became critical. Each railroad originally had its own "standard time." This time was usually that of the railroad headquarters or an important town on the line. In an era when people were still keeping local time, the idea of a standard time seemed implausible if not impossible, but local time was increasingly becoming railroad time. Each town had a "regulator" clock by which local people set their watches and clocks. This clock often hung in the railroad station. On 18 November 1883, the American Railway Association adopted a "standard time" with four time zones one hour apart. The standard time system remained under the auspices of the railroad until 1918, when the U.S. Congress adopted the system and put it under the control of the INTERSTATE COMMERCE COMMISSION (ICC).

The Growth of the Railroad, Railroad Towns, and the Population of the American Interior

Railroads began in the East, but quickly moved west, spider-webbing across the country. Wherever railroads went, people followed and towns grew. Previously uninhabited or sparsely inhabited areas of the country became towns almost overnight when the railroad came through. One striking example is the case of Terminus, Georgia. The small town of about thirty was chosen as the terminus for the Western & Atlantic Railroad. In 1845, it was renamed Atlanta and went on to become one of the most important cities in the South.

Railroads required land on which to lay tracks, build rail yards, and construct depots. Beginning in the 1850s, speculators bought land in the hopes that a railroad would come through an area and they could then resell the land at a much higher price. Also in the 1850s, the United States government realized the value of the railroads and the land associated with them. One of the first railroads built as a single unit was the Illinois Central. The line could be built as one unit partly because the government granted land to the rail company in a patchwork pattern of alternating one-mile-square sections, with the government retaining ownership of the intervening lands. The combination of public and private ownership created by the grant and others like it led to the use and settlement of vacant lands, the extension of railroads into underdeveloped areas, and increased production and wealth. In return for the land grants, the railroads transported government

Page 33  |  Top of Article


Railroads

freight, mail, and personnel, including military troops, until 1946.

The government further encouraged settlement in the wake of the railroads through the Homestead Act of 1862. Settlers were granted 160 acres of land in the West on the condition that they farm it for five years; they could also purchase the land for $1.25 an acre after farming it for only six months. Few farmers could afford to take advantage of the latter provision, but many land speculators could. Thousands of acres of homestead land were purchased by speculators at what were paltry sums, forcing new settlers, in turn, to purchase land at inflated prices from speculators.

Railroads were crucial in moving goods to markets. Cities in the East, like New York and Boston, and in the Midwest, like Chicago, that had begun life as ports, became the centers for railroad transport of agricultural and industrial products. Railroads freed trade of the constrictions of the natural sources of transport, such as rivers, because railroads could be constructed almost anywhere. Like canals before them, railroads became in essence man-made rivers. Railroads moved freight and people between urban centers in the East into the interior of the country and ultimately toward the West.

Towns in the center of the country became boom-towns, acting as railroad transshipment points for goods.

Page 34  |  Top of Article


Golden Spike Ceremony. Men and engines of the Union Pacific and Central Pacific Railroads, approaching from opposite directions, meet face-to-face as the first transcontinental railroad is completed just north of the Great Salt Lake in Utah, 10 May 1869. GETTY IMAGES Golden Spike Ceremony. Men and engines of the Union Pacific and Central Pacific Railroads, approaching from opposite directions, meet face-to-face as the first transcontinental railroad is completed just north of the Great Salt Lake in Utah, 10 May 1869. GETTY IMAGES

Perhaps the best examples of this are the Kansas towns like Abilene and the infamous Dodge City. From the mid-1860s to the mid-1880s, Texas cowboys drove herds of longhorn cattle to these towns where they were loaded onto trains for shipment to stockyards and slaughterhouses in cities like Chicago. The cattle drives ended when the railroads moved even farther west and south to areas where the cattle were grazed and when farmers across whose lands the cattle were driven erected barbed-wire fences to keep out the trampling herds. Railroad towns that were no longer needed as access points for railroads often were abandoned as quickly as they arose or greatly reduced in population. Railroads brought boom and bust to towns and cities across the nation.

The Transcontinental Railroad

A large part of the effort to bring the railroad to the freight instead of the freight to the railroad culminated in the building of the first transcontinental railroad. On 1 July 1862, President Abraham Lincoln signed a bill authorizing the construction of a railroad between the Missouri River and California. The idea for a transcontinental railroad had been around since at least 1848. Engineers had mapped several routes by the 1850s and railroads had been built along some portions of those routes. Rivalry between railroads had prevented the completion of a unified transcontinental route, however.

The outbreak of the Civil War removed the southern routes from consideration and increased the need for a transcontinental railroad for use by the military. Lincoln designated Council Bluffs, Iowa, as the starting place for the new railroad. Two railroads worked on the transcontinental railroad: The Union Pacific built westward from Omaha, Nebraska, and the Central Pacific built eastward from Sacramento, California. The two lines met on 10 May 1869 in Promontory, Utah, where the tracks were joined with a golden spike. The telegraph spread the news nationwide.

This first transcontinental route was built with government assistance in the form of land grants and loans. The line was intended for use by the military and was not expected to make money. Subsequent transcontinental railroads were built with the assistance of land grants but not governmental loans.

Several more transcontinental rail lines were completed between 1869 and 1910. In 1881, the Atchison, Topeka & Santa Fe building from the west met thePage 35  |  Top of Article Southern Pacific at Deming, New Mexico. The Southern Pacific continued eastward until it met the Texas & Pacific at Sierra Blanca, Texas, in 1883. Through the acquisition of other railroads and further construction, including a line to New Orleans and to California from Albuquerque, New Mexico, the second transcontinental railroad was completed in 1883.

Three routes were built to the Pacific Northwest. The Northern Pacific Railroad completed the first in 1883. It ran through the northern tier states. The second opened a year later when the Oregon Short Line joined the Union Pacific with Oregon Railway and Navigation Company tracks. Both railroads later became part of the Union Pacific System. Great Northern completed the third route: the first transcontinental railroad to be built without land grants, the extension connected the West coast with the Chicago, Milwaukee & Saint Paul Railroad.

A Union Pacific route to southern California was completed by the San Pedro, Los Angeles & Salt Lake Railroad in 1905. In 1910, the Western Pacific joined with the Denver, Rio Grande & Western Railroad at Salt Lake City to complete yet another transcontinental route.

The fever for constructing transcontinental routes did not lead to other parts of the railroad system being neglected. In the 1860s, twenty-two thousand miles of new track were laid. Over the course of the decade of the 1870s, forty thousand miles of new rail lines were built. In the 1880s, more than seven thousand miles of new rail line were laid. By the end of the nineteenth century, railroads crisscrossed America, transporting freight to ports and markets at an unprecedented volume.

The Railroads and the U.S. Government

The relationship between the U.S. government and the railroads began in the 1850s with the land grants given to railroads. The government had a vested interest in seeing the expansion of the railroads because this expansion made use of previously unused or underused land, creating new, and taxable, wealth.

A more direct relationship between the government and the railroads was forged during the Civil War. Before 1860, the majority of the railroad track in the United States was in the North. Railroads ran west from the North to the interior of the country; when the war started in 1861, railroads lost their markets in the South, but gained an even bigger market, the military. Railroads in both the North and the South became vital to the Union and Confederate militaries, and large railroad termini, like Atlanta, became prime military targets.

Railroads were used to move large numbers of troops to the sites of major battles. The outcome of the First Battle of Bull Run was determined by troops shifted by rail from the Shenandoah Valley to the vicinity of Manassas, Virginia. In preparation for the launching of General Braxton Bragg's Kentucky campaign, the Confederate Army of Tennessee was moved by rail from Tupelo, Mississippi, to Chattanooga, Tennessee. A more remarkable accomplishment was the movement of General James Longstreet's army corps by rail from Virginia through the Carolinas and Georgia, just in time to secure the Confederate victory of Chickamauga, Georgia. Most remarkable of all was the movement of General Joseph Hooker's two corps of twenty-two thousand men over a distance of twelve hundred miles from Virginia to the vicinity of Chattanooga, via Columbus, Indianapolis, Louisville, and Nashville.

More important even than these spectacular shifts of large army units from one strategic field to another was the part played by the railroads in the day-to-day movement of men, food, ammunition, matériel, and supplies from distant sources to the combat forces. Such movements reached their height during General William Tecumseh Sherman's campaign to capture Atlanta in the summer of 1864. His army of one hundred thousand men and thirty-five thousand animals was kept supplied and fit by a single-track railroad extending nearly five hundred miles from its base on the Ohio River at Louisville.

The military continued to use railroads in later wars. In April 1917, when railroad mileage in the United States was at its peak, the country entered World War I. A volunteer Railroads' War Board was established to coordinate the use of railroads to meet military requirements. When this board proved unsatisfactory, the railroads were taken over by the government on 1 January 1918; the takeover lasted twenty-six months.

During World War II, railroads initially remained under private directorship. Improvements made in the interwar years, perhaps in part because of needs realized during World War I, allowed the railroads to meet World War II military requirements despite less operational railroad track within the United States. Between the world wars, new, more powerful steam locomotives had been put into use; the diesel engine was introduced to passenger travel in 1934 and to freight service in 1941. Wooden cars had been replaced and passenger cars were air conditioned starting in 1929. Passenger train speeds increased and overnight service was instituted for freight service. Railroad signaling was centralized, increasing the capacity of rail lines. The organization and operation of car supply and distribution were improved to the extent that train car shortages became a thing of the past.

Railroad service was so improved that the government did not need to seize the railroads during World War II, but shortly after the war ended the situation changed. In 1946, President Harry S. Truman was forced to seize the railroads to handle a nationwide strike of engineers and trainmen that had paralyzed the railroads (and much of the nation) for two days. Strikes in 1948 and 1950 precipitated further government seizures. The intervention of the government in railroad-labor relations illustrates not only the importance of the railroads, but also the regulatory power the government wields in its relationship with the railroads.

Page 36  |  Top of Article


U.S. Military Railroads Engine no. 137. One of the engines (built in 1864) that served a vital function in the Civil War, taking troops and supplies where they were needed—which made key railroad junctions and tracks the strategic targets of military attack and sabotage. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION U.S. Military Railroads Engine no. 137. One of the engines (built in 1864) that served a vital function in the Civil War, taking troops and supplies where they were needed—which made key railroad junctions and tracks the strategic targets of military attack and sabotage. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION

Railroads and U.S. Government Regulation

Much of the history of the relationship between the U.S. government and railroads has involved regulation or its lack. Early in the growth of railroads, the government tended to ignore what were later seen to be the excesses of railroad developers. The desire to drive the railroad west in the 1860s overrode concerns about land speculators buying up homestead land and led to the distribution of millions of acres of government land to railroads at minimal prices. In the 1880s, railroads set about competing for business, using any means necessary, including special terms to companies who shipped a lot of freight. Planning was minimal—railroads ran everywhere and nowhere at all; railroads were spending a lot, but making little. Ultimately railroads' power to control land and access to markets resulted in farmers who could not afford to ship their goods to market.

In the 1890s, in part in response to the discontent of farmers and others with the disorganized state of the railroads, "ROBBER BARONS" (wealthy speculators and businessmen) bought companies in many industries, consolidating them into large, monopolistic corporations. The foremost of these businessmen in the railroad industry was J. P. Morgan, who set up the House of Morgan in New York City. Morgan proceeded to merge railroads across the country, claiming to be attempting to stabilize the industry. In so doing, he created TRUSTS, virtual monopolies, with interlocking directorates. Investors flocked to trusts like Morgan's. The result for small businessmen was the same as under the previous, disorganized system: power over the railroads rested in the hands of a few individuals who gave preferential treatment to large industrial producers. The government watched these events more or less from the sidelines until, in 1902 President Theodore Roosevelt challenged Morgan's creation of Northern Securities, an entity set up to unite competing railroad moguls from the East and West coasts. Roosevelt used the power of the SHERMAN ANTITRUST ACT (1890), setting a precedent for dissolving railroad and other corporate monopolies.

Attempts to regulate the railroad industry had been made prior to the use of antitrust laws against railroads. Another means the government used to try to regulate railroads was control of interstate trade. Early attempts to regulate railroad rates and practices by states had been only partly successful, although in 1876 the so-calledPage 37  |  Top of Article Granger laws had been upheld by the Supreme Court for intrastate application. In 1886, however, the Court held, in Wabash, Saint Louis and Pacific Railroad Company v. Illinois, that Congress had exclusive jurisdiction over inter-state commerce and that a state could not regulate even the intrastate portion of an interstate movement. Efforts had been made for a dozen years before to have Congress enact regulatory legislation. The decision in the Wabash case resulted in passage on 4 February 1887, of the Interstate Commerce Act, which created the Interstate Commerce Commission. Subsequent legislation broadened the commission's jurisdiction and responsibilities, increased its powers, and strengthened its organization.

Between 1890 and 1900 another 40,000 miles of track were added to the railroad net; after 1900, still another 60,000 miles of line were built, bringing the total of first main track to its peak of 254,000 miles in 1916. Mileage of all tracks, including additional main tracks, passing tracks, sidings, and yards, reached its maximum of 430,000 miles in 1930. By 1960, mileage of line declined to approximately 220,000, and miles of track of all kinds had declined 390,000. This reduction in mileage was the result of many factors, including the exhaustion of the mines, forests, and other natural resources that were the reason for being of many branch lines; intensified competition from water routes and highways; and the coordination and consolidations that made many lines un-necessary. In 1916 more than fourteen hundred companies operated 254,000 miles of line; in 1960, fewer than six hundred companies operated 220,000 miles of line—but the reduced mileage had more than double the effective carrying capacity of the earlier, more extensive network.

Congress voted to return the railroads to private operation and set up the terms of such operation in the TRANSPORTATION ACT OF 1920. Among the changes in government policy was recognition of a measure of responsibility for financial results, found in the direction to the ICC to fix rates at such a level as would enable the railroads, as a whole or in groups, to earn a fair return on the value of the properties devoted to public service. This provision was frequently described as a government guarantee of railroad profits, although there was no guarantee of earnings. Commercial conditions and competitive forces kept railway earnings well below the called-for level, and the government was not asked or required to make up the deficiency.

Another shift in government policy related to consolidation of railroads, which had initially been frowned on but was later encouraged by the Transportation Act of 1920. The change in policy stemmed from the fact that consolidation in one form or another had from early times been the way the major systems, some of which included properties originally built by a hundred or more companies, achieved growth. Accordingly the 1920 law directed the ICC to develop a plan of consolidation for the railroads; in 1933, the ICC requested that it be relieved of this requirement.


Leland Stanford. The cofounder and first president and director of the Central Pacific Railroad and later head of the Southern Pacific Railroad, as well as a governor and U.S. senator and the founder of what is now Stanford University. © CORBIS-BETTMANN Leland Stanford. The cofounder and first president and director of the Central Pacific Railroad and later head of the Southern Pacific Railroad, as well as a governor and U.S. senator and the founder of what is now Stanford University. © CORBIS-BETTMANN

In passing the Transportation Act of 1958 Congress somewhat relaxed regulatory requirements on the railroads, providing, in effect, that competitive cost factors be given greater consideration in determining the lawfulness of rates, so long as the rates proposed were compensatory to the carrier and not discriminatory.

Railroads and Labor

The construction of a massive project like railroads requires a tremendous amount of labor. Once built, railroad upkeep and operation requires even more labor. Ancillary industries utilized large labor forces for the production of iron, and later steel, the felling of trees and processing of wood, and the production of other materials necessary for the manufacture of tracks, locomotives, and train cars. Service industries employed workers to fill jobs such as porters, waiters, and other functions on railroads. Finally, fuel had to be mined and processed to run the locomotives.

Relations between railroads and their workers have often been rancorous. Tension was present from the beginning because of the danger associated with many rail-roadPage 38  |  Top of Article jobs. One of the earliest and most dangerous was that of brakeman. Brakemen rode on top of freight cars, hopping down to stick wooden clubs into the spokes of the wheels of the train to bring it to a halt. The air brake ended this particularly hazardous employment, but other rail jobs were also dangerous. Not only were railroad jobs often dangerous, they usually did not pay well. In the 1870s, many rail workers were paid less than $2 per twelve-hour day.

The combination of dangerous work, long hours, and low pay led to railroads and labor often being at loggerheads. Railroad workers went on strike several times in the late nineteenth and early twentieth centuries. In 1877, one of the largest and most devastating strikes involved Baltimore & Ohio Railroad workers in Martinsburg, West Virginia, who went on strike to protest wage cuts. The strike spread to Baltimore, then to the Pittsburgh and the Pennsylvania railroads, and eventually to St. Louis. Although some national railroad labor unions disavowed the strike, local strikers held train stations and set them afire. State militias and the national guard were called out to break the strike in several locations. A thousand people were imprisoned during the strike, which eventually involved one hundred thousand workers. When the railroads rescinded the wage cuts, the strike, which had involved more than half the freight on the country's railroads, came to an end.

The Homestead and Pullman strikes of 1892 and 1894, respectively, further frayed relations between laborers and railroad management. Strikes and unrest in the railroad industry led the federal government to institute regulations that mitigated some of the labor problems. The first federal legislation addressing relations between railroads and their employees was passed in 1888. The law applied only to employees in train and engine service: the first railway employees to form successful unions—the Brotherhood of Locomotive Engineers in 1863, the Order of Railway Conductors in 1868, the Brotherhood of Locomotive Firemen and Enginemen in 1873, and the Brotherhood of Railroad Trainmen in 1883. These, with the addition of the Switchmen's Union of North America, organized in 1894, constitute the "operating" group of unions. "Nonoperating" crafts formed organizations at various dates—the telegraphers (1886), the six shop-craft unions (1888–1893), the maintenance-of-way employees (1891), the clerks and station employees (1898), the signalmen (1901).

The Erdman Act (1898) and the Newlands Act (1913), which provided various measures for mediation, conciliation, arbitration, and fact-finding in connection with railway labor disputes, dealt with train service cases only. The Transportation Act of 1920 that encouraged the consolidation of railroads also set up the U.S. Railroad Labor Board and granted it jurisdiction over all crafts of employees and power to determine wage rates and working conditions; however, the act did not grant the Labor Board the power to enforce its decisions. In 1922, the shopmen brought about the first nationwide strike on the railroads when they struck in response to a Labor Board decision reducing wages. The strike failed, but its aftereffects were such that in the Railway Labor Act of 1926, agreed to by the unions and the railroads, the Labor Board was abolished and the principles of earlier labor legislation, with their reliance on mediation and conciliation, were restored. The 1926 law was amended in important particulars in 1934, at the urging of the Railway Labor Executives Association, an organization of the "standard" railway unions formed in 1929.

In 1934, the Railroad Retirement Act was passed as the first of the Social Security measures of the New Deal. This legislation was declared unconstitutional, but in 1937 a retirement and unemployment insurance system was set up under legislation agreed upon by the Railway Labor Executives Association and the Association of American Railroads, an organization of the industry formed in 1934.

Strikes by the engineers and trainmen and other groups of unions in 1946, 1948, and 1950 led, in 1951, to amendment of the 1934 Railway Labor Act. The amendment removed the prohibition on requiring union membership as a condition of railroad employment, thus permitting the establishment of the union shop by negotiation. Such agreements were negotiated on most railroads.

Passenger Transport in the Early Twentieth Century

The romance of railroad travel extends perhaps as far back to the day when Tom Thumb pulled a train car with thirty people through the Maryland countryside. The first sleeper car, an innovation that provided some comfort on long rail journeys, was made for the Cumberland Valley Railroad that ran through Pennsylvania and Maryland. In 1856, the sleeper car that was to become an American classic was invented by George W. Pullman. The cars had an upper and lower berths and were improved by all-steel construction in 1859.

The heyday of passenger rail travel, however, did not begin until the 1920s. The year that kicked off that decade saw a record 1.2 billion passengers. The immense rider-ship was short lived; the automobile became more and more popular throughout the 1920s. In 1934, the Burlington, Chicago & Quincy line introduced the Zephyr—a streamlined, diesel-powered locomotive. The locomotive was unveiled at the Century of Progress Exhibition and was later featured in the 1934 movie, The Silver Streak. The country was transfixed, and by the end of the decade rail travel had again become fashionable. Many railroad lines ran streamlined trains and passenger travel increased by 38 percent between 1930 and 1939, though total ridership remained at less than half of the highs of 1920.

World War II again interrupted the popularity of rail travel. Railroads remained profitable during the war years because government used the railroads to move troops, supplies, and equipment and because of the scarcity ofPage 39  |  Top of Article other means of transport during gas rationing. After World War II, railroads failed to recapture the American imagination and never recovered the phenomenal number of passengers of the early part of the century. Automobiles and airplanes took a firm hold as the preferred means of passenger transport in the United States. Railroads turned to more profitable freight business as their main source of income.

Throughout the postwar years the railroads made many capital improvements, spending, on average, more than $1 billion a year. The most significant change was the replacement of steam power by diesel-electric power. Continuous-welded rail in lengths of a quarter-mile, a half-mile, and even longer came into wider use. Railroads were increasingly maintained by more efficient off-track equipment. New freight cars that rode more smoothly were designed. An automatic terminal with electronic controls, known as the push-button yard, was developed. Container or trailer-on-flatcar service, commonly called piggybacking, was introduced. Containers today are used in the transport of much of the freight in the United States and abroad.

The Late Twentieth Century and Early Twenty-first Century

Fewer passengers and decreased freight and mail service in the second half of the twentieth century led to railroad bankruptcies as well as mergers and acquisitions designed to streamline the industry. By the 1970s, railroad passengers accounted for only 7.2 percent of travelers in the United States. By contrast, airline passengers represented 73 percent of travelers each year. Freight service has evolved differently. Between 1980 and 2000, while the number of miles of track decreased from 202,000 to approximately 173,000, the amount of freight transported annually increased from 918 billion ton-miles (one ton transported one mile) to 1.4 trillion ton-miles.

New types of freight service appeared in the 1960s. Although the number of freight cars in service dropped slightly, the average capacity per car increased by nearly 25 percent. In addition, container freight service continued to grow. Railroads also rebuilt a declining coal traffic by reducing rates through the introduction of "unit trains," which are whole trains of permanently coupled cars that carry bulk tonnage to a single destination on a regular schedule. Unit trains were so popular that they were soon in use for hauling a variety of commodities.

During the 1960s and early 1970s, total investment in the railroad industry grew only modestly. The rather bleak financial picture was in part relieved by technological advances. A major reduction in overheated locomotive engines ("hot boxes") was achieved during the 1960s. Improved lubrication plus infrared detection devices at trackside reduced the incidence of overheated engines by more than 90 percent.

Beginning in the late 1960s, railroad cars were tagged with automatic car identification, which allowed them to be tracked anywhere in the country. The use of computers to control train traffic burgeoned during the decade, with almost ten thousand miles of Centralized Traffic Control installed.

Passenger rail service dropped sharply in the 1960s. In 1961 passenger service was offered on more than 40 percent of the nation's railroads. By 1971 passenger trains were running on less than 20 percent of the national mileage. In an effort to save the failing passenger rail industry in the United States, the government sponsored a project for high-speed passenger service in the Northeast corridor from Boston to Washington, D.C., running through New York City and Philadelphia. The service was dubbed the Metroliner and is today part of the AMTRAK system.

Amtrak, National Railroad Passenger Corporation, is a federally sponsored entity that took control of most railroad passenger service in May 1971. In 2000, Amtrak had 22,000 miles of track and served forty-six states and over five hundred communities. Despite a ridership of over 22 million passengers in 2000, Amtrak faced a severe financial crisis. Amtrak and the government continue to work together to try to maintain passenger rail service across the United States.

The number of railroad employees declined steadily in tandem with declining ridership in the 1960s. At the beginning of the twenty-first century, the number of railroad employees hovers at slightly over one hundred thousand; the average annual income of a railroad employee is $60,000 per year.

Since the middle of the twentieth century, mergers have become a survival tactic for railroads. The aim was to achieve significant operational savings, which were projected and claimed for nearly every proposed merger. In 1960, 116 Class I, large freight, railroads operated in the United States; only nine were in operation by 1997. Class I railroads dropped from 106 to 76 between 1960 and 1965.

The federal government continued to play a role in railroad affairs in the second half of the twentieth century. In addition to sponsoring Amtrak, the federal government addressed regulatory issues. Federal controls had been somewhat lessened by the Transportation Act of 1958, but most railroad managers still believed their industry to be overregulated. In 1970, the Department of Transportation was established; in 1980, sweeping changes were made to federal government regulatory practices. The STAG-GERS RAIL ACT (1980) forced partial deregulation of the industry. In addition, the decline in passenger service and a decreased need for freight service because of greater railroad efficiency, along with government support of the airlines and highway construction, led to the railroads becoming unable to compete effectively. Federal regulation also prevented railroads from reacting to changes in the marketplace.

Deregulation permitted railroads to make changes that increased their revenues. For example, unprofitablePage 40  |  Top of Article branch lines could be closed. Railroads were also forced into free competition with air and road carriers. Shippers could now demand better prices from railroad carriers. More recently, the small number of freight railroads has caused some concern among shippers, who have begun to question the competitiveness in the industry.

Recent technological advances are revolutionizing railroads in other areas. In the 1990s, the airbrake had its first significant change since the 1930s. The Electro-Pneumatic brake system now in use allows the command for the brakes on a train to be sent electronically by the engineer, thereby increasing braking control. Computers control many other phases of railroad operation; satellites monitor the position of trains to prevent collisions. Many trains, like those of the Metro-North commuter train in southern New York, are now equipped with a system that sends signals to a display in the train, eliminating the need for wayside signaling. Finally, high-speed passenger rail service has been developed. At present, it is in limited use by Amtrak in the Northeast corridor. The hope is that commuters and travelers will see high-speed rail as an alternative to air travel and automobiles, ushering in another great age of passenger train travel.

BIBLIOGRAPHY

Bianculli, Anthony J. Trains and Technology: The American Railroad in the Nineteenth Century. Vol. 1, Trains and Technology. Newark: University of Delaware Press, 2001.

Daniels, Rudolph. Trains across the Continent: North American Railroad History. Bloomington: Indiana University Press, 2000.

Del Vecchio, Mike. Pictorial History of America's Railroads. Osceola, Wis.: MBI Publishing, 2001.

Saunders, Richard, Jr. Merging Lines: American Railroads, 1900– 1970. DeKalb: Northern Illinois University Press, 2001.

Schweiterman, Joseph P. When the Railroad Leaves Town: American Communities in the Age of Rail Line Abandonment. Kirksville, Mo.: Truman State University Press, 2001.

Stover, John F., and Mark C. Carnes. The Routledge Historical Atlas of the American Railroads. New York: Routledge, 1999.

Usselman, Steven W. Regulating Railroad Innovation: Business, Technology, and Politics in America, 1840–1920. New York: Cambridge University Press, 2002.

Williams, John Hoyt. A Great and Shining Road: The Epic Story of the Transcontinental Railroad. Lincoln: University of Nebraska Press, 1996

Source Citation

Source Citation   

Gale Document Number: GALE|CX3401803512