Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

Citation metadata

From: eLife(Vol. 5)
Publisher: eLife Science Publications, Ltd.
Document Type: Article
Length: 15,107 words
Lexile Measure: 1560L

Document controls

Main content

Abstract :

Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI: eLife digest A unique cancer called canine transmissible venereal tumour (CTVT) causes ugly tumours to form on the genitals of dogs. Unlike most other cancers, CTVT is contagious: the cancer cells can be directly transferred from one dog to another when they mate. The disease originated from the cancer cells of one individual dog that lived approximately 11,000 years ago. CTVT now affects dogs all over the world, which makes it the oldest and most widespread cancer known in nature. Like healthy cells, cancer cells contain compartments known as mitochondria that produce the chemical energy needed to power vital processes. Inside the mitochondria, there is some DNA that encodes the proteins that mitochondria need to perform this role. Changes (or mutations) to this mitochondrial DNA (mtDNA) may stop the mitochondria from working properly. CTVT cells have previously been found to occasionally capture mtDNA from normal dog cells, which suggests that replenishing their mtDNA may help promote CTVT cell growth. Furthermore, these captured mtDNAs act as genetic "flags" that can help trace the spread of the disease. Here, Strakova, Ní Leathlobhair et al. analysed the mtDNA in CTVT tumours collected from over 400 dogs in 39 countries. The analysis shows that CTVT cells have captured mtDNA from normal dog cells on at least five occasions. Over the last 2,000 years, the disease appears to have spread rapidly around the world, perhaps transported by dogs travelling on ships along historic trade routes. CTVT may have only reached the Americas within the last 500 years, possibly carried there by dogs brought by Europeans. Likewise, CTVT probably only came to Australia after European contact. The experiments also revealed that the most damaging types of mutations were absent from the mtDNA of CTVT, which suggests that fully functioning mitochondria play an important role in CTVT. Unexpectedly, Strakova, Ní Leathlobhair et al. found evidence that certain sections of mtDNA in some CTVT cells have been exchanged, or shuffled, with the mtDNA captured from normal dog cells. This type of "recombination" is not usually thought to occur in mtDNA, and has not previously been detected in cancer. Future studies will determine if this process is widespread in other types of cancer, including in humans. DOI:

Source Citation

Source Citation   

Gale Document Number: GALE|A473355077