Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin.

Citation metadata

From: Soil(Vol. 7, Issue 1)
Publisher: Copernicus GmbH
Document Type: Brief article
Length: 358 words

Document controls

Main content

Abstract :

Nitrogen (N) availability can be highly variable in tropical forests on regional and local scales. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared natural abundance of .sup.15 N isotopes of soil profiles in tropical lowland forest, tropical montane forest, and subtropical Miombo woodland within the Congo Basin as a proxy to assess ecosystem-level differences in N cycling. Soil [delta].sup.15 N profiles indicated that N cycling in the montane forest is relatively more closed and dominated by organic N turnover, whereas the lowland forest and Miombo woodland experienced a more open N cycle dominated by inorganic N. Furthermore, we examined the effect of slope gradient on soil [delta].sup.15 N within forest types to quantify local differences induced by topography. Our results show that slope gradient only affects the soil [delta].sup.15 N in the Miombo forest, which is prone to erosion due to a lower vegetation cover and intense rainfall at the onset of the wet season. Lowland forest, on the other hand, with a flat topography and protective vegetation cover, showed no influence of topography on soil [delta].sup.15 N in our study site. Despite the steep topography, slope angles do not affect soil [delta].sup.15 N in the montane forest, although stable isotope signatures exhibited higher variability within this ecosystem. A pan-tropical analysis of soil [delta].sup.15 N values (i.e., from our study and literature) reveals that soil [delta].sup.15 N in tropical forests is best explained by factors controlling erosion, namely mean annual precipitation, leaf area index, and slope gradient. Erosive forces vary immensely between different tropical forest ecosystems, and our results highlight the need for more spatial coverage of N cycling studies in tropical forests, to further elucidate the local impact of topography on N cycling in this biome.

Source Citation

Source Citation   

Gale Document Number: GALE|A656785386