Research on students' classroom performance evaluation algorithm based on machine learning.

Citation metadata

Author: Enwei Cao
Date: Mar. 24, 2022
Publisher: Inderscience Publishers Ltd.
Document Type: Brief article
Length: 143 words

Document controls

Main content

Abstract :

In order to overcome the poor accuracy of traditional classroom performance evaluation algorithm, a machine learning-based classroom performance evaluation algorithm was designed. This paper makes an empirical analysis of the statistical data and constructs a statistical information analysis model for students' classroom performance evaluation. According to the mining results of students' classroom performance evaluation information, the adaptive mining and feature clustering of students' classroom performance evaluation data are carried out. This paper uses quantitative game method to evaluate students' classroom performance, constructs the explanatory variable and control variable model of students' classroom performance evaluation, and then uses machine learning method to optimise the evaluation of students' classroom performance. The simulation results show that the evaluation accuracy of the proposed method is always above 0.77, which has high reliability and adaptability, and improves the quantitative evaluation ability of students' classroom performance. Byline: Enwei Cao

Source Citation

Source Citation   

Gale Document Number: GALE|A699801924