Phosphate removal combined with acetate supplementation enhances lipid production from water hyacinth by Cutaneotrichosporon oleaginosum

Citation metadata

Date: June 15, 2019
From: Biotechnology for Biofuels(Vol. 12, Issue 1)
Publisher: BioMed Central Ltd.
Document Type: Report
Length: 5,076 words
Lexile Measure: 1420L

Document controls

Main content

Abstract :

Background Microbial lipids derived from various lignocellulosic feedstocks have emerged as a promising candidate for the biodiesel industry and a potential substitute for high value-added fats. However, lignocellulosic biomass, especially herbaceous biomass, such as water hyacinth, contains high concentrations of nitrogenous components. These compounds impede microbial lipid production, as lipid biosynthesis is commonly induced by imposing a nutrient deficiency, especially nitrogen starvation. Novel strategies and bioprocesses are pivotal for promoting lipid production from nitrogen-rich biomass. Results Here a combined strategy of phosphate removal and acetate supplementation was described for enhanced microbial lipid production on water hyacinth hydrolysates by Cutaneotrichosporon oleaginosum (formerly Cryptococcus curvatus). Lipid production was significantly improved, when the phosphorus limitation and sugars/acetate co-utilization strategies were used separately. In this case, acetate and glucose were consumed simultaneously. Lipid production was observed by the combination of phosphate removal with acetate supplementation. Lipid titer, content, and yield were determined to be 7.3 g/L, 59.7% and 10.1 g/100 g raw water hyacinth, respectively. These data were increased by 4.2, 4.6, and 4.3 times, respectively, compared to those from the unprocessed hydrolysates. The fatty acid compositions of the resulting lipids bear a marked resemblance to those of rapeseed oil, indicating their applicability to the biodiesel industry. Conclusions The combination of phosphate removal and acetate supplementation was successful in significantly enhancing microbial lipid production. This strategy offers a valuable solution for nitrogen-rich lignocellulosic feedstocks utilization, which should foster more economical nitrogen-rich biomass-to-lipid bioprocesses. Keywords: Cutaneotrichosporon oleaginosum, Water hyacinth, Acetate, Phosphorus limitation, Microbial lipid

Source Citation

Source Citation   

Gale Document Number: GALE|A590762986