Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: an open-label, randomised controlled trial

Citation metadata

From: The Lancet Infectious Diseases(Vol. 18, Issue 11)
Publisher: Elsevier B.V.
Document Type: Report
Length: 875 words

Document controls

Main content

Abstract :

Byline: Christopher Troeger, Brigette Blacker, Ibrahim A Khalil, Puja C Rao, Jackie Cao, Stephanie R M Zimsen, Samuel B Albertson, Aniruddha Deshpande, Tamer Farag, Zegeye Abebe, Ifedayo Morayo O Adetifa, Tara Ballav Adhikari, Mohammed Akibu, Faris Hasan Al Lami, Ayman Al-Eyadhy, Nelson Alvis-Guzman, Azmeraw T Amare, Yaw Ampem Amoako, Carl Abelardo T Antonio, Olatunde Aremu, Ephrem Tsegay Asfaw, Solomon Weldegebreal Asgedom, Tesfay Mehari Atey, Engi Farouk Attia, Euripide Frinel G Arthur Avokpaho, Henok Tadesse Ayele, Tambe Betrand Ayuk, Kalpana Balakrishnan, Aleksandra Barac, Quique Bassat, Masoud Behzadifar, Meysam Behzadifar, Soumyadeep Bhaumik, Zulfiqar A Bhutta, Ali Bijani, Michael Brauer, Alexandria Brown, Paulo A M Camargos, Carlos A Castaneda-Orjuela, Danny Colombara, Sara Conti, Abel Fekadu Dadi, Lalit Dandona, Rakhi Dandona, Huyen Phuc Do, Eleonora Dubljanin, Dumessa Edessa, Hajer Elkout, Aman Yesuf Endries, Daniel Obadare Fijabi, Kyle J Foreman, Mohammad H Forouzanfar, Nancy Fullman, Alberto L Garcia-Basteiro, Bradford D Gessner, Peter W Gething, Rahul Gupta, Tarun Gupta, Gessessew Bugssa Hailu, Hamid Yimam Hassen, Mohammad T Hedayati, Mohsen Heidari, Desalegn Tsegaw Hibstu, Nobuyuki Horita, Olayinka S Ilesanmi, Mihajlo B Jakovljevic, Amr A Jamal, Amaha Kahsay, Amir Kasaeian, Dessalegn Haile Kassa, Yousef Saleh Khader, Ejaz Ahmad Khan, Md Nuruzzaman Khan, Young-Ho Khang, Yun Jin Kim, Niranjan Kissoon, Luke D Knibbs, Sonali Kochhar, Parvaiz A Koul, G Anil Kumar, Rakesh Lodha, Hassan Magdy Abd El Razek, Deborah Carvalho Malta, Joseph L Mathew, Desalegn Tadese Mengistu, Haftay Berhane Mezgebe, Karzan Abdulmuhsin Mohammad, Mohammed A Mohammed, Fatemeh Momeniha, Srinivas Murthy, Cuong Tat Nguyen, Katie R Nielsen, Dina Nur Anggraini Ningrum, Yirga Legesse Nirayo, Eyal Oren, Justin R Ortiz, Mahesh PA, Maarten J Postma, Mostafa Qorbani, Reginald Quansah, Rajesh Kumar Rai, Saleem M Rana, Chhabi Lal Ranabhat, Sarah E Ray, Mohammad Sadegh Rezai, George Mugambage Ruhago, Saeid Safiri, Joshua A Salomon, Benn Sartorius, Miloje Savic, Monika Sawhney, Jun She, Aziz Sheikh, Mekonnen Sisay Shiferaw, Mika Shigematsu, Jasvinder A Singh, Ranjani Somayaji, Jeffrey D Stanaway, Muawiyyah Babale Sufiyan, Getachew Redae Taffere, Mohamad-Hani Temsah, Matthew J Thompson, Ruoyan Tobe-Gai, Roman Topor-Madry, Bach Xuan Tran, Tung Thanh Tran, Kald Beshir Tuem, Kingsley Nnanna Ukwaja, Stein Emil Vollset, Judd L Walson, Fitsum Weldegebreal, Andrea Werdecker, T Eoin West, Naohiro Yonemoto, Maysaa El Sayed Zaki, Lei Zhou, Sanjay Zodpey, Theo Vos, Mohsen Naghavi, Stephen S Lim, Ali H Mokdad, Christopher J L Murray, Simon I Hay, Robert C Reiner Jr [bcreiner@uw.edu] (*) Summary Background Lower respiratory infections are a leading cause of morbidity and mortality around the world. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, provides an up-to-date analysis of the burden of lower respiratory infections in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 26 years and shows how the burden of lower respiratory infection has changed in people of all ages. Methods We used three separate modelling strategies for lower respiratory infections in GBD 2016: a Bayesian hierarchical ensemble modelling platform (Cause of Death Ensemble model), which uses vital registration, verbal autopsy data, and surveillance system data to predict mortality due to lower respiratory infections; a compartmental meta-regression tool (DisMod-MR), which uses scientific literature, population representative surveys, and health-care data to predict incidence, prevalence, and mortality; and modelling of counterfactual estimates of the population attributable fraction of lower respiratory infection episodes due to Streptococcus pneumoniae, Haemophilus influenzae type b, influenza, and respiratory syncytial virus. We calculated each modelled estimate for each age, sex, year, and location. We modelled the exposure level in a population for a given risk factor using DisMod-MR and a spatio-temporal Gaussian process regression, and assessed the effectiveness of targeted interventions for each risk factor in children younger than 5 years. We also did a decomposition analysis of the change in LRI deaths from 2000--16 using the risk factors associated with LRI in GBD 2016. Findings In 2016, lower respiratory infections caused 652,572 deaths (95% uncertainty interval [UI] 586,475--720,612) in children younger than 5 years (under-5s), 1,080,958 deaths (943,749--1,170,638) in adults older than 70 years, and 2,377,697 deaths (2,145,584--2,512,809) in people of all ages, worldwide. Streptococcus pneumoniae was the leading cause of lower respiratory infection morbidity and mortality globally, contributing to more deaths than all other aetiologies combined in 2016 (1,189,937 deaths, 95% UI 690,445--1,770,660). Childhood wasting remains the leading risk factor for lower respiratory infection mortality among children younger than 5 years, responsible for 61*4% of lower respiratory infection deaths in 2016 (95% UI 45*7--69*6). Interventions to improve wasting, household air pollution, ambient particulate matter pollution, and expanded antibiotic use could avert one under-5 death due to lower respiratory infection for every 4000 children treated in the countries with the highest lower respiratory infection burden. Interpretation Our findings show substantial progress in the reduction of lower respiratory infection burden, but this progress has not been equal across locations, has been driven by decreases in several primary risk factors, and might require more effort among elderly adults. By highlighting regions and populations with the highest burden, and the risk factors that could have the greatest effect, funders, policy makers, and programme implementers can more effectively reduce lower respiratory infections among the world's most susceptible populations. Funding Bill & Melinda Gates Foundation. * Correspondence to: Dr Robert C Reiner Jr, Institute for Health Metrics and Evaluation, Seattle, WA 98121, USA (footnote)[Dagger] Collaborators listed at end of Article

Source Citation

Source Citation   

Gale Document Number: GALE|A559792836