Lethal and Sublethal Toxicity Comparison of BFRs to Three Marine Planktonic Copepods: Effects on Survival, Metabolism and Ingestion

Citation metadata

Authors: Wenjing Gong, Liyan Zhu and Ya Hao
Date: Jan. 29, 2016
From: PLoS ONE(Vol. 11, Issue 1)
Publisher: Public Library of Science
Document Type: Article
Length: 7,555 words
Lexile Measure: 1410L

Document controls

Main content

Abstract :

The estuarine planktonic copepods have a wide geographical distribution and commendable tolerance to various kinds of contaminants. The primary aim of the present study was to contrast the impacts of model POPs (TBBPA and HBCD) on three common estuarine planktonic copepods (Oithona similis, Acartia pacifica and Pseudodiaptomus inopinus) and establish a protocol for the assessment of acute toxicity of marine organic pollutants. We first quantified the 96h-LC.sub.50 (0.566, 0.04 and 0.257 mg/L of TBBPA to the three subjects above respectively and 0.314 mg/L of HBCD to P. inopinus; all reported concentrations are nominal values). In the sub-lethal toxicity tests, it was turned out that the effects of copepods exposed to TBBPA could product different influences on the energy ingestion and metabolism. Different type of pollutions, meanwhile, could also bring varying degree effect on the target copepods. In general, the indicators (the rate of oxygen consumption, ammonia excretion, food ingestion and filtration) in higher concentration groups showed marked significant difference compared with controls as well a dose-effect relationship. The study also extended the research on the joint toxicity of TBBPA and HBCD based on the survival rate of P.inopinus. Whether 1:1 concentration or 1:1 toxic level, the research showed synergy effect relative to single exposure conditions. The result indicated that current single ecological testing used for environmental protection activities may underestimate the risk for copepods. It was also demonstrated that short-term sub-lethal experiment could be a standard to evaluate the sensitivity of copepods to POPs.

Source Citation

Source Citation   

Gale Document Number: GALE|A441791431