Discriminating three motor imagery states of the same joint for brain-computer interface.

Citation metadata

Date: Aug. 24, 2021
From: PeerJ(Vol. 9)
Publisher: PeerJ. Ltd.
Document Type: Article
Length: 7,117 words
Lexile Measure: 1460L

Document controls

Main content

Abstract :

The classification of electroencephalography (EEG) induced by the same joint is one of the major challenges for brain-computer interface (BCI) systems. In this paper, we propose a new framework, which includes two parts, feature extraction and classification. Based on local mean decomposition (LMD), cloud model, and common spatial pattern (CSP), a feature extraction method called LMD-CSP is proposed to extract distinguishable features. In order to improve the classification results multi-objective grey wolf optimization twin support vector machine (MOGWO-TWSVM) is applied to discriminate the extracted features. We evaluated the performance of the proposed framework on our laboratory data sets with three motor imagery (MI) tasks of the same joint (shoulder abduction, extension, and flexion), and the average classification accuracy was 91.27%. Further comparison with several widely used methods showed that the proposed method had better performance in feature extraction and pattern classification. Overall, this study can be used for developing high-performance BCI systems, enabling individuals to control external devices intuitively and naturally.

Source Citation

Source Citation   

Gale Document Number: GALE|A673021626