Formation of stable aggregates by fluid-assembled solid bridges.

Citation metadata

Publisher: National Academy of Sciences
Document Type: Article
Length: 6,615 words
Lexile Measure: 1440L

Document controls

Main content

Abstract :

When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope. Cohesion arises at a common length scale (~5 [micro]m), where interparticle attractive forces exceed particle weight. In polydisperse mixtures, smaller particles condense within shrinking capillary bridges to build stabilizing "solid bridges" among larger grains. This dynamic repeats across scales, forming remarkably strong, hierarchical clusters, whose cohesion derives from grain size rather than mineralogy. These results may help toward understanding the strength and erodibility of natural soils, and other polydisperse particulates that experience transient hydrodynamic forces. aggregate stability | evaporation | solid bridges | cohesion

Source Citation

Source Citation   

Gale Document Number: GALE|A618575018