Cul4A-DDB1-mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine.

Citation metadata

Date: Nov. 1, 2021
From: Journal of Clinical Investigation(Vol. 131, Issue 21)
Publisher: American Society for Clinical Investigation
Document Type: Report
Length: 10,905 words
Lexile Measure: 1370L

Document controls

Main content

Abstract :

Although serine metabolism plays a crucial role in the proliferation and survival of tumor cells, how it supports tumor cell migration remains poorly understood. Phosphoglycerate dehydrogenase (PHGDH) catalyzes the oxidation of 3-phosphoglycerate to 3-phosphonooxypyruvate, the first committed step in de novo serine biosynthesis. Here we show that PHGDH was monoubiquitinated by cullin 4A-based E3 ligase complex at lysine 146 in colorectal cancer (CRC) cells, which enhanced PHGDH activity by recruiting a chaperone protein, DnaJ homolog subfamily A member 1, to promote its tetrameric formation, thereby increasing the levels of serine, glycine, and S- adenosylmethionine (SAM). Increased levels of SAM upregulated the expression of cell adhesion genes (laminin subunit gamma 2 and cysteine rich angiogenic inducer 61) by initiating SET domain containing 1A-mediated trimethylation of histone H3K4, thereby promoting tumor cell migration and CRC metastasis. Intriguingly, SAM levels in tumors or blood samples correlated with the metastatic recurrence of patients with CRC. Our finding not only reveals a potentially new role and mechanism of SAM-promoted tumor metastasis but also demonstrates a regulatory mechanism of PHGDH activity by monoubiquitination.

Source Citation

Source Citation   

Gale Document Number: GALE|A682076194