Mental fatigue prediction during eye-typing.

Citation metadata

Date: Feb. 22, 2021
From: PLoS ONE(Vol. 16, Issue 2)
Publisher: Public Library of Science
Document Type: Report
Length: 7,296 words
Lexile Measure: 1490L

Document controls

Main content

Abstract :

Mental fatigue is a common problem associated with neurological disorders. Until now, there has not been a method to assess mental fatigue on a continuous scale. Camera-based eye-typing is commonly used for communication by people with severe neurological disorders. We designed a working memory-based eye-typing experiment with 18 healthy participants, and obtained eye-tracking and typing performance data in addition to their subjective scores on perceived effort for every sentence typed and mental fatigue, to create a model of mental fatigue for eye-typing. The features of the model were the eye-based blink frequency, eye height and baseline-related pupil diameter. We predicted subjective ratings of mental fatigue on a six-point Likert scale, using random forest regression, with 22% lower mean absolute error than using simulations. When additionally including task difficulty (i.e. the difficulty of the sentences typed) as a feature, the variance explained by the model increased by 9%. This indicates that task difficulty plays an important role in modelling mental fatigue. The results demonstrate the feasibility of objective and non-intrusive measurement of fatigue on a continuous scale.

Source Citation

Source Citation   

Gale Document Number: GALE|A652669358