Geospatial HIV-1 subtype C gp120 sequence diversity and its predicted impact on broadly neutralizing antibody sensitivity.

Citation metadata

From: PLoS ONE(Vol. 16, Issue 5)
Publisher: Public Library of Science
Document Type: Report
Length: 7,484 words
Lexile Measure: 1590L

Document controls

Main content

Abstract :

Evolving diversity in globally circulating HIV-1 subtypes presents a formidable challenge in defining and developing neutralizing antibodies for prevention and treatment. HIV-1 subtype C is responsible for majority of global HIV-1 infections. In the present study, we examined the diversity in genetic signatures and attributes that differentiate region-specific HIV-1 subtype C gp120 sequences associated with virus neutralization outcomes to key bnAbs having distinct epitope specificities. A total of 1814 full length HIV-1 subtype C gp120 sequence from 37 countries were retrieved from Los Alamos National Laboratory HIV database ( The amino acid sequences were assessed for their phylogenetic association, variable loop lengths and prevalence of potential N-linked glycosylation sites (pNLGS). Responses of these sequences to bnAbs were predicted with a machine learning algorithm 'bNAb-ReP' and compared with those reported in the CATNAP database. Subtype C sequences from Asian countries including India differed phylogenetically when compared with that from African countries. Variable loop lengths and charges within Indian and African clusters were also found to be distinct from each other, specifically for V1, V2 and V4 loops. Pairwise analyses at each of the 25 pNLG sites indicated distinct country specific profiles. Highly significant differences (p

Source Citation

Source Citation   

Gale Document Number: GALE|A662781703