A novel cross-species differential tumor classification method based on exosome-derived microRNA biomarkers established by human-dog lymphoid and mammary tumor cell lines' transcription profiles.

Citation metadata

From: Veterinary World(Vol. 15, Issue 5)
Publisher: Veterinary World
Document Type: Article
Length: 4,264 words
Lexile Measure: 1500L

Document controls

Main content

Abstract :

Background and Aim: Exosome-derived microRNA (miRNA) has been widely studied as a non-invasive candidate biomarker for tumor diagnosis in humans and dogs. Its application, however, was primarily focused on intraspecies usage for individual tumor type diagnosis. This study aimed to gain insight into its application as a cross-species differential tumor diagnostic tool; we demonstrated the process of identifying and using exosome-derived miRNA as biomarkers for the classification of lymphoid and mammary tumor cell lines in humans and dogs. Materials and Methods: Exosome-derived miRNA sequencing data from B-cell lymphoid tumor cell lines (n=13), mammary tumor cell lines (n=8), and normal mammary epithelium cultures (n=4) were pre-processed in humans and dogs. F-test and rank product (RP) analyses were used to select candidate miRNA orthologs for tumor cell line classification. The classification was carried out using an optimized support vector machine (SVM) with various kernel classifiers, including linear SVM, polynomial SVM, and radial basis function SVM. The receiver operating characteristic and precision-recall curves were used to assess the performance of all models. Results: MIR10B, MIR21, and MIR30E were chosen as the candidate orthologs from a total of 236 human-dog miRNA orthologs (p 10, and RP score Conclusion: The study successfully demonstrated a method for identifying and utilizing candidate human-dog exosome-derived miRNA orthologs for differential tumor cell line classification. Such findings shed light on a novel non-invasive tumor diagnostic tool that could be used in both human and veterinary medicine in the future. Keywords: exosome-derived microRNA, meta-analysis, ortholog, support vector machine, tumor.

Source Citation

Source Citation   

Gale Document Number: GALE|A704237663