Convective self-aggregation in a mean flow.

Citation metadata

Date: July 8, 2021
From: Atmospheric Chemistry and Physics(Vol. 21, Issue 13)
Publisher: Copernicus GmbH
Document Type: Brief article
Length: 201 words

Document controls

Main content

Abstract :

Convective self-aggregation is an atmospheric phenomenon seen in numerical simulations in a radiative convective equilibrium framework thought to be informative of some aspects of the behavior of real-world convection in the deep tropics. We impose a background mean wind flow on convection-permitting simulations through the surface flux calculation in an effort to understand how the asymmetry imposed by a mean wind influences the propagation of aggregated structures in convection. The simulations show that, with imposing mean flow, the organized convective system propagates in the direction of the flow but slows down compared to what pure advection would suggest, and it eventually becomes stationary relative to the surface after 15 simulation days. The termination of the propagation arises from momentum flux, which acts as a drag on the near-surface horizontal wind. In contrast, the thermodynamic response through the wind-induced surface heat exchange feedback is a relatively small effect, which slightly retards the propagation of the convection relative to the mean wind.

Source Citation

Source Citation   

Gale Document Number: GALE|A667866027