Impact of high- and low-vorticity turbulence on cloud-environment mixing and cloud microphysics processes.

Citation metadata

From: Atmospheric Chemistry and Physics(Vol. 21, Issue 16)
Publisher: Copernicus GmbH
Document Type: Brief article
Length: 201 words

Document controls

Main content

Abstract :

Turbulent mixing of dry air affects the evolution of the cloud droplet size spectrum via various mechanisms. In a turbulent cloud, high- and low-vorticity regions coexist, and inertial clustering of cloud droplets can occur in low-vorticity regions. The nonuniformity in the spatial distribution of the size and in the number of droplets, variable vertical velocity in vortical turbulent structures, and dilution by entrainment/mixing may result in spatial supersaturation variability, which affects the evolution of the cloud droplet size spectrum via condensation and evaporation processes. To untangle the processes involved in mixing phenomena, a 3D direct numerical simulation of turbulent mixing followed by droplet evaporation/condensation in a submeter-sized cubed domain consisting of a large number of droplets was performed in this study. The analysis focused on the thermodynamic and microphysical characteristics of the droplets and the flow in high- and low-vorticity regions. The impact of vorticity generation in turbulent flows on mixing and cloud microphysics is illustrated.

Source Citation

Source Citation   

Gale Document Number: GALE|A672366103