Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties

Citation metadata

Publisher: National Academy of Sciences
Document Type: Author abstract
Length: 167 words
Lexile Measure: 60L

Document controls

Main content

Abstract :

Genomewide association studies depend on the extent of linkage disequilibrium (LD), the number and distribution of markers, and the underlying structure in populations under study. Outbreeding species generally exhibit limited LD, and consequently, a very large number of markers are required for effective whole-genome association genetic scans. In contrast, several of the world's major food crops are self-fertilizing inbreeding species with narrow genetic bases and theoretically extensive LD. Together these are predicted to result in a combination of low resolution and a high frequency of spurious associations in LD-based studies. However, inbred elite plant varieties represent a unique human-induced pseudooutbreeding population that has been subjected to strong selection for advantageous alleles. By assaying 1,524 genomewide SNPs we demonstrate that, after accounting for population substructure, the level of LD exhibited in elite northwest European barley, a typical inbred cereal crop, can be effectively exploited to map traits by using whole-genome association scans with several hundred to thousands of biallelic SNPs. barley | linkage disequilibrium | oligo pool assay

Source Citation

Source Citation   

Gale Document Number: GALE|A156581825