Prospects for the application of transcranial magnetic stimulation in diabetic neuropathy

Citation metadata

Authors: Xi Xu and Dong-Sheng Xu
Date: May 2021
From: Neural Regeneration Research(Vol. 16, Issue 5)
Publisher: Medknow Publications and Media Pvt. Ltd.
Document Type: Report
Length: 8,532 words
Lexile Measure: 1500L

Document controls

Main content

Article Preview :

Byline: Xi. Xu, Dong-Sheng. Xu

Encouraging results have been reported for the use of transcranial magnetic stimulation-based nerve stimulation in studies of the mechanisms of neurological regulation, nerve injury repair, and nerve localization. However, to date, there are only a few reviews on the use of transcranial magnetic stimulation for diabetic neuropathy. Patients with diabetic neuropathy vary in disease progression and show neuropathy in the early stage of the disease with mild symptoms, making it difficult to screen and identify. In the later stage of the disease, irreversible neurological damage occurs, resulting in treatment difficulties. In this review, we summarize the current state of diabetic neuropathy research and the prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. We review significant studies on the beneficial effects of transcranial magnetic stimulation in diabetic neuropathy treatment, based on the outcomes of its use to treat neurodegeneration, pain, blood flow change, autonomic nervous disorders, vascular endothelial injury, and depression. Collectively, the studies suggest that transcranial magnetic stimulation can produce excitatory/inhibitory stimulation of the cerebral cortex or local areas, promote the remodeling of the nervous system, and that it has good application prospects for the localization of the injury, neuroprotection, and the promotion of nerve regeneration. Therefore, transcranial magnetic stimulation is useful for the screening and early treatment of diabetic neuropathy. Transcranial magnetic stimulation can also alleviate pain symptoms by changing the cortical threshold and inhibiting the conduction of sensory information in the thalamo-spinal pathway, and therefore it has therapeutic potential for the treatment of pain and pain-related depressive symptoms in patients with diabetic neuropathy. Additionally, based on the effect of transcranial magnetic stimulation on local blood flow and its ability to change heart rate and urine protein content, transcranial magnetic stimulation has potential in the treatment of autonomic nerve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diabetic neuropathy, and transcranial magnetic stimulation can reduce oxidative damage. The pathological mechanisms of diabetic neuropathy should be further studied in combination with transcranial magnetic stimulation technology.

Introduction

Overview of transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a focused, non-invasive form of cerebral cortical and local stimulation, and its application was first reported in the functional localization of the central nervous system (Barker et al., 1985; Xu and Sun, 2020; Yang et al., 2020). By choosing different stimulation patterns and setting different parameters, TMS can be used in central and peripheral nervous system lesions for evaluating the excitability and integrity of the corticospinal tract and determining the degree of damage to motor function and the motor conduction pathway (Takahashi et al., 2015). Furthermore, TMS can affect local cerebral blood flow, change oxidative stress levels, and promote limb functional recovery after nerve injury (Beaulieu et al., 2013). Currently, TMS research has focused primarily on neurological regulatory mechanisms, as well as combined diagnostic and clinical treatment techniques.

Based on Faraday's law of induction, TMS generates an induced electric field in the conductor by...

Source Citation

Source Citation   

Gale Document Number: GALE|A642710636