Continuous 24-hour measurement of intraocular pressure in millimeters of mercury (mmHg) using a novel contact lens sensor: Comparison with pneumatonometry.

Citation metadata

From: PLoS ONE(Vol. 16, Issue 3)
Publisher: Public Library of Science
Document Type: Report
Length: 5,530 words
Lexile Measure: 1400L

Document controls

Main content

Abstract :

Purpose To address the unmet need of continuous IOP monitoring, a Pressure-Measuring Contact Lens (PMCL) was developed to measure IOP in millimeters of mercury (mmHg) continuously over 24 hours. The present study assessed the reliability of the novel PMCL. Methods In this prospective open-label clinical study, healthy and open-angle glaucoma (OAG) subjects were fitted with the PMCL, and pneumatonometry was performed on study eyes (in absence of the PMCL) and on fellow eyes before, during, and after provocative tests. The primary outcome measures were (1) mean IOP difference between same-eye measurements, and (2) percentage of timepoints at which IOP measured by the PMCL was within 5 mmHg of that measured by pneumatonometry in the fellow eye. Results Eight subjects were analysed (4 healthy, 4 OAG). The average difference in successive IOP measurements made by pneumatonometry and with the PMCL was 2.0±4.3mmHg at placement-time, and 6.5±15.2mmHg at removal time. During water drinking test, a significant increase in IOP was detected both by PMCL in the study eye (2.4±2.5mmHg, p = 0.03) and by pneumatonometry in the fellow eye (1.9±1.9mmHg, p = 0.02). Over the 24-hour recording, 88.0% of IOP variations measured by the PMCL were within 5mmHg of that measured with the pneumatonometer in the fellow eye. A transient corneal erosion of severe intensity was observed following removal of the PMCL on one single eye, and may have affected measurement accuracy in that eye. Conclusions This study is a proof-of-concept for this novel PMCL, and its results are encouraging, with a fair accuracy in IOP values measurement and good sensitivity to subtle IOP variations.

Source Citation

Source Citation   

Gale Document Number: GALE|A656020288