Intravenous infusion of rocuronium bromide prolongs emergence from propofol anesthesia in rats.

Citation metadata

From: PLoS ONE(Vol. 16, Issue 2)
Publisher: Public Library of Science
Document Type: Report
Length: 4,975 words
Lexile Measure: 1370L

Document controls

Main content

Abstract :

Background Neuromuscular blocking agents induce muscle paralysis via the prevention of synaptic transmission at the neuromuscular junction and may have additional effects at other sites of action. With regard to potential effects of neuromuscular blocking agents on the central nervous system, a definitive view has not been established. We investigated whether intravenous infusion of rocuronium bromide affects the emergence from propofol anesthesia. Methods Using an in vivo rat model, we performed propofol infusion for 60 minutes, along with rocuronium bromide at various infusion rates or normal saline. Sugammadex or normal saline was injected at the end of the infusion period, and we evaluated the time to emergence from propofol anesthesia. We also examined the neuromuscular blocking, circulatory, and respiratory properties of propofol infusion along with rocuronium bromide infusion to ascertain possible factors affecting emergence. Results Intravenous infusion of rocuronium bromide dose-dependently increased the time to emergence from propofol anesthesia. Sugammadex administered after propofol infusion not containing rocuronium bromide did not affect the time to emergence. Mean arterial pressure, heart rate, partial pressures of oxygen and carbon dioxide, and pH were not affected by rocuronium bromide infusion. Neuromuscular blockade induced by rocuronium bromide, even at the greatest infusion rate in the emergence experiment, was rapidly antagonized by sugammadex. Conclusions These results suggest that intravenous infusion of rocuronium bromide dose-dependently delays the emergence from propofol anesthesia in rats. Future studies, such as detection of rocuronium in the cerebrospinal fluid or central nervous system, electrophysiologic studies, microinjection of sugammadex into the brain, etc., are necessary to determine the mechanism of this effect.

Source Citation

Source Citation   

Gale Document Number: GALE|A651503159