Instability-negative pressure loss model of gas drainage borehole and prevention technique: A case study.

Citation metadata

Date: Nov. 23, 2020
From: PLoS ONE(Vol. 15, Issue 11)
Publisher: Public Library of Science
Document Type: Report
Length: 7,496 words
Lexile Measure: 1600L

Document controls

Main content

Abstract :

The internal collapse of deep seam drainage borehole and negative pressure loss represents a serious technical problem affecting gas drainage. To address this problem a creep model of coal around borehole was established based on the plastic softening characteristics of coal. The final collapse time of the borehole was determined and used to derive the three stages of the borehole collapse process. The model of negative pressure loss in drainage borehole was established according to the theory of fluid dynamics, the model of methane gas flow and the creep model of the coal around the borehole. The relationship between the negative pressure loss of drainage and the change of borehole aperture was derived, thereby revealing the main influencing factors of the negative pressure loss in the borehole. A drainage technique named "Full-hole deep screen mesh pipe" was introduced and tested to prevent the collapse of borehole and reduce the negative pressure loss. The result shows that after the borehole was drilled, the borehole wall was affected by the complex stress of the deep coal seam, the coal surrounding the borehole collapsed or presented the characteristics of creep extrusion towards the borehole. The "Full-hole deep screen mesh pipe drainage technology" could effectively control the collapse as well as the deformation of the borehole and reduced the negative pressure loss. Compared with the traditional drainage technology, the methane gas drainage concentration was increased by 101% and the gas flow was increased by 97% when the methane gas was drained for 90 days, the gas drainage efficiency increased significantly.

Source Citation

Source Citation   

Gale Document Number: GALE|A642604950