Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study.

Citation metadata

From: Environmental Health Perspectives(Vol. 130, Issue 3)
Publisher: National Institute of Environmental Health Sciences
Document Type: Report
Length: 9,748 words
Lexile Measure: 1480L

Document controls

Main content

Abstract :

Background: DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA methylation. Objectives: We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006; Cincinnati, Ohio). Methods: We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n = 266) and peripheral leukocytes at 12 years of age (n = 160) using the Illumina Human Methylation EPIC BeadChip. We analyzed associations between [log.sub.2]-transformed PFAS concentrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms between children's age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project Viva (1999-2002; Boston, Massachusetts) to replicate significant associations. Results: After adjusting for covariates, 435 cytosine-guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q Discussion: In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between gestational PFAS exposure and health. https://doi.org/10.1289/EHP10118

Source Citation

Source Citation   

Gale Document Number: GALE|A696826097