A one class KNN for signal identification: a biological case study

Citation metadata

Date: Oct. 19, 2009
Publisher: Inderscience Publishers Ltd.
Document Type: Case study
Length: 115 words

Document controls

Main content

Abstract :

Byline: Vito Di Gesu, Giosue Lo Bosco, Luca Pinello The paper describes an application of a one class KNN to identify different signal patterns embedded in a noise structured background. The problem becomes harder whenever only one pattern is well-represented in the signal; in such cases, one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a multi layer model (MLM) that provides preliminary signal segmentation in an interval feature space. The one class KNN has been tested on synthetic and real (Saccharomyces cerevisiae) microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.

Source Citation

Source Citation   

Gale Document Number: GALE|A272197905