Landscape of Alternative Splicing Events Related to Prognosis and Immune Infiltration in Glioma: A Data Analysis and Basic Verification.

Citation metadata

Date: July 4, 2022
Publisher: Hindawi Limited
Document Type: Article
Length: 5,620 words
Lexile Measure: 1370L

Document controls

Main content

Abstract :

Background. Glioma is a prevalent primary brain cancer with high invasiveness and typical local diffuse infiltration. Alternative splicing (AS), as a pervasive transcriptional regulatory mechanism, amplifies the coding capacity of the genome and promotes the progression of malignancies. This study was aimed at identifying AS events and novel biomarkers associated with survival for glioma. Methods. RNA splicing patterns were collected from The Cancer Genome Atlas SpliceSeq database, followed by calculating the percentage of splicing index. Expression profiles and related clinical information of glioma were integrated based on the UCSC Xena database. The AS events in glioma were further analyzed, and glioma prognosis-related splicing factors were identified with the use of bioinformatics analysis and laboratory techniques. Further immune infiltration analysis was performed. Results. Altogether, 9028 AS events were discovered. Upon univariate Cox analysis, 425 AS events were found to be related to the survival of patients with glioma, and 42 AS events were further screened to construct the final prognostic model (areaunderthecurve=0.974). Additionally, decreased expression of the splicing factors including Neuro-Oncological Ventral Antigen 1 (NOVA1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), heterogeneous nuclear ribonucleoprotein L-like protein (HNRNPLL), and RNA-Binding Motif Protein 4 (RBM4) contributed to the poor survival in glioma. The immune infiltration analysis demonstrated that AS events were related to the proportion of immune cells infiltrating in glioma. Conclusions. It is of great value for comprehensive consideration of AS events, splicing networks, and related molecular subtype clusters in revealing the underlying mechanism and immune microenvironment remodeling for glioma, which provides clues for the further verification of related therapeutic targets.

Source Citation

Source Citation   

Gale Document Number: GALE|A710569616